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Abstract 

This paper concerns correspondences on hyperbolic curves, which are analogous to isogenies of 

abelian varieties. The first main result states that given a fixed hyperbolic curve in characteristic 
zero and a fixed “type” (g,r) (where 2g - 2 + I 2 l), there are only finitely many hyperbolic 
curves of type (g,r) that are isogenous to the given curve. The second main result states if 
2g - 2 + Y 2 3, then the only curves isogenous to a general hyperbolic curve of type (g,r) 
are the curves that arise as its coverings. Finally, we discuss the meaning of these results 
relative to the analogy with abelian varieties, especially in light of a certain result of Royden 
on automorphisms of Telchmiiller space. @ 1998 Elsevier Science B.V. All rights reserved. 

1991 Math. S&j. Class.: Primary 14H35; Secondary 14ElO 

0. Introduction 

The purpose of this paper is to prove several theorems concerning the finiteness and, 

more generally, the scarcity of correspondences on hyperbolic curves in characteristic 

zero and to comment on the meaning of these results, especially relative to the analogy 

with abelian varieties. 

We consider hyperbolic curves over an algebraically closed field k of characteristic 

zero. We call two such curves X, Y isogenous if there exists a nonempty scheme 

C, together with finite &tale morphisms C -+X, C + Y. (We refer to such a pair 

(C --+X, C + Y) as a correspondence from X to Y.) It is easy to see that the relation 

of isogeny is an equivalence relation on the set of isomorphism classes of hyperbolic 
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curves over k. Then the first main result of this paper (cf. Lemma 4.1 and Theorem 4.2 

in the text) is the following: 

Theorem A. Let k be an algebraically closed field of characteristic zero. Let X be a 

hyperbolic curve over k. Let (g’, r’) be a pair of nonnegative integers satisfying 29’ - 

2 + r’ >O. Then (up to isomorphism) there are only finitely many hyperbolic curves 

over k of type (g’,r’) that are isogenous to X. Moreover, tf K is an algebraically 

closed field extension of k, then any curve which is isogenous to X over K is dejned 

over k and already isogenous to X over k. 

This result is, technically speaking, a rather trivial consequence of highly nontrivial 

results of Margulis and Takeuchi [4, 91. Moreover, it is possible that Theorem A has 

been known to many experts for some time, but that they simply never bothered to 

write it down. As for the author, I was dimly aware of Theorem A for some time, 

without having checked the details of the proof of it, until I was asked explicitly about 

the finiteness stated in Theorem A by Prof. Frans Oort during my stay at Utrecht 

University in November 1996. I was then encouraged by Prof. Oort to write down the 

details; whence the present paper. 

In fact, for general curves, we can say more: indeed, let (~&)k denote the moduli 

stack of r-pointed smooth (proper) curves of genus g. Here, the r marked points are 

unordered. (Note that this differs slightly from the usual convention.) The complement 

of the divisor of marked points of such a curve will be a hyperbolic curve of type 

(g,r). Thus, we shall also refer (by slight abuse of terminology) to (JJ&.)~ as the 

moduli stack of hyperbolic curves of type (g,r). 

Theorem B. Let k be an algebraically closed jield of characteristic zero. Let (g, r) 

be a pair of nonnegative integers such that 2g - 2 + r 2 3. Let (./&,r)k be the moduli 

stack of (hyperbolic) curves of type (g,r). Then there exists a dense open substack 

% c(J8$r)k with the following property: If X is a hyperbolic curve over some alge- 

braically closed extension field K of k that defines a point of a(K), then every cor- 

respondence (c( : C -+ X, p : C +X’) from X to another hyperbolic curve X’ is trivial 

in the sense that there exists a jinite &tale morphism y :X’ -+X such that M = y o fi 

In particular, for such an X, every X’ isogenous to X can be realized as a jinite 

&tale covering of X. 

Theorem B follows from Theorem 5.3 in the text. Moreover, in the exceptional cases 

ruled out in the statement of Theorem B, a general curve always admits nontrivial 

correspondences (see Theorem 5.7 and the Remark following it). 

One aspect of the significance of Theorem A is that it shows that although “isogeny” 

of hyperbolic curves is a natural analogue of the notion of isogeny for abelian 

varieties, the behavior of hyperbolic curves with respect to isogeny is somewhat 

d@erent from the behavior of abelian varieties with respect to isogeny. For in- 

stance, if one starts with a (principally polarized) abelian variety, and considers all the 

principally polarized abelian varieties isogenous to it - i.e., a so-called “Hecke orbit” 
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_ such orbits (far from being finite) are dense in the moduli stack of principally polar- 

ized abelian varieties in characteristic zero s$g. Indeed, one can see this density in the 

classical complex topology by using the uniformization of &g by Sp2&R) (modulo a 

maximal compact subgroup), and the fact that SpZJQ) is dense in SpZB(R). 

One way to describe why such “Hecke orbits” tend to be so big is to regard this 

phenomenon as a consequence of the existence of various natural nontrivial correspon- 

dences on JzZ~, the so-called Hecke correspondences. “Acting on” some initial point 

with these correspondences gives a natural way of constructing lots of abelian vari- 

eties isogenous to the abelian variety corresponding to the initial point. Given these 

circumstances, Theorem A then leads one to suspect that unlike de, the moduli stack 

Jz’~,, of hyperbolic curves of type (g,r) will not have very many correspondences. In 

fact, one has the following result (given as Theorem 6.1 in the text): 

Theorem C. Suppose that 2g - 2 + r > 3. Then &Ye,, is generically a scheme, and 

moreover, does not admit any nontrivial automorphisms or correspondences. 

Technically speaking, this is a trivial consequence of a theorem of Royden, although I 

have not seen Royden’s theorem interpreted in this way - i.e., as implying a statement 

about correspondences on &e,, - elsewhere. 

It is intriguing that the exceptional cases ruled out in Theorems B and C (i.e., the 

cases where 2g - 2 + r < 2) are precisely the same. That is to say, the existence of 

nontrivial correspondences on a general curve appears to be related to irregularities in 

the holomorphic automorphism group of Teichmtiller space. Unfortunately, I do not 

have any theoretical explanation for this phenomenon at the time of writing. 

Finally, another interesting aspect of this circle of ideas is the following: in the 

case of JZJ’~, the algebraic Hecke correspondences may be constructed p-adically using 

the Serre-Tate parameters, or, equivalently, by means of a certain canonical Frobenius 

lifting over the ordinary locus of the p-adic completion of ~4~. (This Frobenius lifting 

is the Frobenius lifting given by assigning to an abelian variety with ordinary reduction 

modulo p, the quotient of this abelian variety by the multiplicative portion of the kernel 

of multiplication by p. For g = 1, this Frobenius lifting is known as the “Deligne-Tate 

map”.) Put another way, although this canonical Frobenius lifting is essentially p-adic 

in nature, and cannot be algebraized, by combining it with its transpose, we obtain a 

correspondence which can be algebraized - namely, into a Hecke correspondence. On 

the other hand, in the case of J&,, there does exist a direct analogue of the canonical 

Frobenius lifting on (the ordinary locus of the p-adic completion of) -Pe, - namely, 

the theory of [5-71. Thus, it is natural to ask whether the canonical modular Frobenius 

lifting on JZg,, can be algebraized in a similar fashion by forming a correspondence 

from the union of the Frobenius lifting and its transpose. Theorem C tells us, however, 

that the answer is no. 

Thus, although Theorems A-C are technically just concatenations of known results, 

their significance in the context of the theory of [5-71 appears not to have been noticed 

by previous authors. 
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1. Basic definitions 

Let k be an algebraically closed field of characteristic zero. Let X be a hyperbolic 

curve over k. By this, we mean that X is an open subset of a proper, smooth, connected, 

one-dimensional k-scheme X such that if g is the genus of x (i.e., the dimension of 

H’(X, 0’) over k), and r is the number of points in X-X, then we have 2g-2+r > 0. 

We shall refer to (g,r) as the type of X. 

Suppose that Y and Z are also hyperbolic curves over k. Then let us give the 

following definition. 

Definition 1.1. We shall refer to as a correspondence from X to Y any (ordered) pair 

of finite, Ctale morphisms a : C -+X, /I : C + Y, where we assume that C is nonempty. 

Thus, C will necessarily be a finite disjoint union of hyperbolic curves over k. Note 

that we do not assume that C is connected. 

Definition 1.2. We shall refer to a correspondence (cz : C 4 X, fi : C + Y) from X to Y 

as trivial if there exists a finite &tale morphism y : Y +X such that a = y o /3. 

Definition 1.3. Given a correspondence (c(, /3) from X to Y, we shall refer to as the 

transpose correspondence to (a, p) the correspondence (from Y to X) given by the 

pair (P, a). 

Definition 1.4. Let (~11 : Cl -X,/3, : Cr 4 Y) (respectively, (~12 : C2 -+ Y, & : C2 + Z)) 

be a correspondence from X to Y (respectively, Y to Z). Then we shall refer to as the 

composite of these two correspondences the correspondence given by the following pair 

of morphisms: the first morphism Ci x r C2 +X is given by composing the projection to 

Ci with al; the second morphism Cl x r C2 + Z is given by composing the projection 

to C2 with p2. Thus, the composite correspondence is a correspondence from X to Z. 

As the terminology “from X to Y” implies, we want to regard correspondences from 

X to Y as a sort of hyperbolic analogue of isogenies between abelian varieties. 

Definition 1.5. We shall call two hyperbolic curves X and Y over k isogenous if there 

exists a correspondence from X to Y. 

Note that by taking transposes and composites of correspondences, one sees imme- 

diately that the relation of isogeny is an equivalence relation. 

2. Review of results of Margulis and Takeuchi 

In this section, we assume that k is C, the field of complex numbers. Let X be 

a hyperbolic curve over k. Let X be the Riemann surface associated to X. Thus, the 

underlying set of 3 is X(C). Let & be the universal covering space of X. Thus, 
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!? is a Riemann surface. From elementary complex analysis, one knows that @ is 

holomorphically isomorphic to 2 dAf {z E C ( Im(z) > 0). Let us choose a holomorphic 

identification of !? with &? Recall also from elementary complex analysis that the 

group of holomorphic automorphisms of 2 may be identified with PSLz(R)O (acting 

via linear fractional transformations). (Here, the superscripted “0” denotes the connected 

component of the identity.) Let us write II for the (topological) fundamental group of 

$!” (for some choice of base-point). Then the action of II on & by deck transformations 

defines an injection 17 L) Aut(%) = PSLz(R)‘. Let us denote the image of this injection 

by r & PSLz(R)‘. In the following, we will always think of r as a subgroup of 

PSL2(R)‘. 

Next, if ri and r, are two subgroups of PSLz(R)‘, let us write rt N fi (read “r’ 

is commensurable with rz”) if ri n r’ has finite index in both l-1 and r,. Also, let us 

write 

comm(r) def {y E POLIO 1 (y . r . y-1) N r). 

Note that r C Comm(T). Then we give the following definition. 

Definition 2.1. We shall say that X, X, or r has infinitely many correspondences if r 

has infinite index in Comm(T). 

By a theorem of [4] (see Theorem 2.5 below), X is “arithmetic” if and only if it 

has infinitely many correspondences. We would like to review this result below, but 

before we can do this, we need to review what it means for X to be “arithmetic”. 

Unfortunately, for hyperbolic curves, there (at least) two different ways to define arith- 

meticity. In this paper, we will need to use both definitions, so in the following, we 

shall review both definitions, and then show that they are equivalent. 

We begin with the definition of [4, Chap. 9, Section 1.51: To do this, first we need 

to recall some basic terminology. If F is a field of characteristic zero, and G is an 

algebraic group over F, then we shall say that G is almost F-simple if any proper, 

closed, normal algebraic subgroup of G defined over F is finite. Also, we shall denote 

by (PSLz)n the algebraic group “PSLz” over R. 

Definition 2.2. We shall call X, X, or r Margulis arithmetic if there exists a con- 

nected non-commutative almost Q-simple algebraic group G over Q, together with a 

surjection z : GR dzf G @Q R --+ (PSLz)n of algebraic groups over R such that the Lie 

group (Kerr)(R) is compact, and the subgroups z(G(Z)) and r (of PSLz(R)‘) are 

commensurable. (Here, by the notation G(Z), we mean the Z-valued points of GLN 

that lie inside G for some embedding of Q-algebraic groups G L) (GLN)Q. Thus, prop- 

erly speaking, “G(Z)” is an equivalence class of commensurable subgroups of G(Q) 

(see [4, p. 60, Lemma 3.1.l(iv)] and the following discussion for more details).) 

Next, we review the definition of arithmeticity given in [9]: 
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Definition 2.3. We shall call X, %‘+‘, or r Shimura arithmetic the following 

exist: 

(1) totally real number field 

(2) a algebra A F which trivial at of the places of 

and nontrivial all the infinite places; 

a trivialization A at infinite place F at A is this trivial- 

will be to regard as a of M*(R); 

an order CA such the intersection 0~ &A Mz(R) with C 

Mx(R) image in commensurable with 

(The reason this terminology that the described in definition 

(used [9]) was extensively by in, for [8, Chap. 

The following is well-known, I do know of adequate reference: 

2.4. The surface X Margulis arithmetic and only it is 
arithmetic. 

Proof. Shimura arithmeticity Margulis arithmeticity clear. Thus, us 

assume r is arithmetic, and that it also Shimura Let 

us that we a G a z : GR 4 (PSLz)n as in Definition 2.2. First, let us 

observe that the fact that G is almost Q-simple implies that Go is the almost direct 

product of its almost simple factors Hi g Go (where i = 1,. . . , n) - see, e.g., [4, p. 211. 

Moreover, since the almost simple factors are canonical, it follows that the action 

of Gal(Q/Q) on Go (given by the fact that Go is defined over G) permutes these 

almost simple factors. Since G is almost Q-simple, it even follows that Gal(Q/Q) acts 

transitively on the almost simple factors of Go. Thus, the stabilizer of, for instance, HI 

in Gal(Q/Q) is Gal(Q/F), for some finite extension F of Q. Moreover, the action of 

Gal(Q/F) on HI (which is an algebraic group over Q) defines an F-rational structure 

on HI, i.e., there is some F-algebraic group HF such that H1 = (HP) EIF 0. In fact, it 

follows from the definitions that the other Hi’s are just the Galois conjugates of HI, 

hence that the inclusion (HF)Q = HI L) Go induces an isogeny of G’ dAf RestF,q(HF) 

(where “RestF,Q” denotes “Weil restriction of scalars from F to Q”) onto G. 

Next, we would like to observe that Lie(HF)o is isomorphic to sZz(C). To see this, 

we argue as follows. First, note that z @R C induces a surjection of Lie algebras from 

Lie(G,-) onto s/z(C). Since s/z(C) is a simple Lie algebra, it thus follows that at least 

one of the Lie(Hi)c’s is isomorphic to s/z(C). But this implies that Lie(HF)c 2 sZz(C), 

as desired. 

Now let H> be the quotient of HF by its centre. Then it follows from the elementary 

theory of algebraic groups, plus what we did in the preceding paragraph, that H$ is 

some twisted form of (PGLz)o over F. In other words, H$ defines a class in the 

nonabelian Galois cohomology set H’(F,PGLz), hence an element of the Brauer group 

of F of order two. Put another way, there exists a quaternion algebra A over F such 

that H; may be identified with (the F-algebraic group corresponding to) AX/F x. 
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Next, we would like to show that F is totally real, and that A is the sort of quaternion 

algebra that appears in Definition 2.3. To do this, we consider G(R). The above analysis 

of G’ and Hs shows that for each complex infinite place of F, there appears in 6 

an almost R-simple factor which is isogenous to Restc,n(PGLz)c. If r were trivial 

on this factor, then (Kerr)(R) would contain SLz(C) or PSLz(C), hence would be 

noncompact. Thus, we obtain that r is nontrivial on such a factor. On the other hand, 

this implies that there exists a nontrivial morphism PGLz(C) -+ PGLx(R)O of real Lie 

groups. Moreover, since PGLz(R)’ has an R-simple Lie algebra, it follows that such 

a morphism is smjective. But since the kernel of this morphism is compact and of 

real dimension three, this implies that the maximal compact subgroup of PGLz(C) is 

normal, which is absurd. This contradiction implies that F has no complex places. 

Similarly, if the quatemion algebra A were trivial at two real places of F, then we 

would get a surjection PGLz(R)O x PGLz(R)O --+PGLz(R)’ (of real Lie groups) with 

compact kernel. But since the kernel of such a surjection is necessarily isomorphic to 

PGLz(R)‘, this is absurd. Thus, we see that A is as in Definition 2.3. Now one sees 

easily that r defines a trivialization (datum (3) of Definition 2.3) and that there exist 

representatives of the equivalence class “G(Z)” that arise in the fashion described in 

(4) of Definition 2.3. This shows that r is Shimura arithmetic, thus completing the 

proof of the proposition. 0 

In the future, we shall refer to X, X, or r as arithmetic if it is either Margulis 
arithmetic or Shimura arithmetic (since we now know that these two notions of arith- 

meticity are equivalent). 

Now we are ready to state the main results that we wanted to review in this section: 

Theorem 2.5 (Margulis [4, p. 337, Theorem 27; p. 60, Lemma 3.1.1 (v)]). The hyperbolic 
Riemann surface X is arithmetic if and only if it has infinitely many correspondences 
(in the sense of Dejinition 2.1). 

Theorem 2.6 (Takeuchi [9, Theorem 2.11). There are only finitely many arithmetic 
X over C of a given type (g,r). 

The first main result of this paper will essentially be a consequence of the above two 

results, plus various elementary manipulations, to be discussed in the following section. 

3. The non-arithmetic case 

We maintain the notation of Section 2. Moreover, in this section, we assume that X 

is not arithmetic. Thus, we have r C Comm(r) C PSLz(R)‘, and r is of jinite index 
in Comm(T). Now we would like to form the quotient of A? by Comm(r) in the 
sense of stacks. (We refer to Chap. 1, Section 4 of [2] for generalities on stacks.) Let 

us denote this quotient by ?Y. Note that since r has finite index in Con-m(T), it follows 

that we get a finite &tale morphism % --f %‘. Moreover, this finite &ale morphism gives 
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the analytic stack g an algebraic structure, so we obtain an algebraic stack Y together 

with a finite Ctale morphism X + Y corresponding to X + 24 

Definition 3.1. Suppose that X is not arithmetic. Then we shall refer to Y (res- 

pectively g) as the hyperbolic core of X (respectively, %). 

Next, we would like to suppose that we have been given a correspondence (a : C --+X, 

p : C + 2) from X to some other hyperbolic curve 2; we assume here, for simplic- 

ity, that C is connected. This gives rise to corresponding analytic morphisms 59 + %, 

%? + 2. Moreover, these two morphisms induce isomorphisms between the respec- 

tive universal covering spaces. Also, we get various groups of deck transformations 

r,, l$, r’ C Aut(2’) = PSL2(R)O, together with various inclusion relations: rg G rz; 

rg C &. (Note that the object that we have been referring to up till now by the 

notation “p’ will now be referred to as “rx”.) Now we have the following result: 

Proposition 3.2. We have r9 C Comm(&). 

Proof. First observe that for the purpose of proving this proposition, we may assume 

that C is Galois over 2. Thus, rq is normal (and of finite index) in r’. Now let 

y Er’. Then rEn(y.rz.y-‘) contains r’rl(y.rq.y-‘)=TV. In particular, it follows 

that r% n (y . &- . y-l ) is of finite index in rx (and hence also - by replacing y by y-’ 
- of finite index in y . rx . y-l). This completes the proof of the proposition. 0 

Interpreting this proposition in terms of Riemamr surfaces, we see that there exists 

a unique finite etale morphism d-+ g such that the following diagram commutes: 

%7------t 

(Here, the upper horizontal and left-hand vertical morphisms are the analytic morphisms 

associated to /I and a, respectively, and the lower horizontal morphism is the morphism 

that appeared in the construction of the hyperbolic core of .!E.) Moreover, this diagram 

can be algebraized. Thus, in particular, we obtain an (algebraic) finite &tale morphism 

z-+ Y. 

Write (gz,rz) for the type of 2. Observe from the Riemanr-Hurwitz formula that 

there exists a positive rational number ey E Q such that if T is any hyperbolic curve, 

of type (gT, rT), and f : T + Y is finite etale of degree d, then 2gr - 2 + rT = ey . d. 
Now we are ready to prove the following result: 

Theorem 3.3. Suppose that X is not arithmetic. Fix a pair of nonnegative integers 
(g’, r’) such that 29’ - 2 + r’ >O. Then there exist (up to isomorphism) only finitely 
many hyperbolic curves Z of type (g’,r’) that are isogenous to Z. 
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Proof. Indeed, by the above discussion, we see that we get (for such Z) a finite 

&ale morphism Z -+ Y. Moreover, the degree of this morphism (and hence also of 

the corresponding analytic morphism S? -+ g) is bounded by a number that depends 

only on g’, r’, and ey (i.e., X). On the other hand, note that since Comm(Tz) has 

a finite index subgroup which is finitely generated - namely, r~ - it follows that 

Comm(Tz) is itself finitely generated. Moreover, since one may think of Comm(T& 

as the fundamental group of g/, the fact that this group is finitely generated implies 

that there are (up to isomorphism) only finitely many finite &ale coverings of g 

of degree less than some fixed number. This observation completes the proof of the 

Theorem. 0 

Remark. Let X be nonarithmetic. Then let us observe that if the automorphism group 

G dAf Aut(X) of X is nontrivial, then X is not equal to its hyperbolic core. Indeed, 

since it is clear that the morphism X -+ Y that defines Y as the hyperbolic core of X 

is natural, it follows that this morphism is equivariant with respect to the given action 

of G on X and the trivial action of G on Y. Thus, X + Y necessarily factors through 

the quotient (in the sense of stacks) X +X/G, which implies that X -+ Y has degree 

> 1, as claimed. 

On the other hand, the converse to this statement, i.e., that “if the degree of X + Y 
is > 1, then X admits nontrivial automorphisms”, is false in general. Indeed, one can 

construct such an X as follows: Let X’ be a nonarithmetic affine hyperbolic curve 

which is equal to its hyperbolic core (such X’ exist by Theorem 5.3 below). Then the 

fundamental group of X’ will be a nonabelian finitely generated free group, so it is easy 

to see that it admits a finite &tale covering X +X’ (where X is connected, and X +X’ 

has degree > 1) such that there are no intermediate Galois coverings X -+X” (except 

X=X). (For instance, take X -+X’ to be non-Galois of prime degree.) Then I cZaim 
that X+X’ exhibits X’ as the hyperbolic core of X. Indeed, if X + Y is the morphism 

defining Y as the hyperbolic core of X, then X + Y must factor through X +X’; but 

this gives us a finite &I\: morphism X’ -+ Y which must be an isomorphism (cf. the 

discussion preceding Theorem 3.3) since X’ is equal to its own hyperbolic core. This 

proves the claim. Thus, X has no automorphisms (for if it did, then by the argument of 

the preceding paragraph . +X’ would admit a nontrivial intermediate Galois covering 

X-+X”), but is not eqll::S t,J its hyperbolic core. 

4. The main theorem 

Now we return to the .3.:uation where k is any algebraically closed field of charac- 

teristic zero. Let X be a hyperbolic curve over k. Let K be an algebraically closed 

field of characteristic zero that contains k. Write X, for X @k K. 

Lemma 4.1. Suppose that X, is isogenous to some hyperbolic curve Z, over K. Then 
Z, is the result of base-extending some hyperbolic curve Z over k from k to K, and, 
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moreover, any correspondence from X, to Z, descends to a correspondence from X 

to z. 

Proof. Indeed, since it only takes “finitely many equations” to define a curve or a 

correspondence, it follows that any @K : CK -Xl, BK : CK + & descends to a pair of 

finite etale morphisms ER : CR +&, PR : CR + ZR of curves over R, where R is a finitely 

generated k-subalgebra of K. Now observe that since aR is finite &tale, and the &tale 

site of a scheme is rigid with respect to deformations, it follows that MR descends 

to a finite Ctale morphism a : C AX. Moreover, if we restrict /?iR to a closed point 

s of Spec(R), the tangent space to the space of deformations of /Is : C, = C 4 2, is 

given by the kernel of the pull-back map H’(Z,, rz,) 4 H’(C, zc = rz, 1 C) (where “r” 

denotes “tangent bundle”). But I claim that this pull-back map is injective: Indeed, this 

follows from the existence of the trace map which gives a one-sided inverse of the 

pull-back map. (Note that here we use the fact that the degree of /Is is invertible in k 
_ a consequence of the assumption that k is of characteristic zero.) Thus, there are no 

nontrivial deformations of /&, so again we conclude that BR = /Is @k R. This completes 

the proof of the lemma. 0 

Now we are ready to prove the first main result of the paper: 

Theorem 4.2. Let k be an algebraically closed field of characteristic zero. Let X be 
a hyperbolic curve over k. Let (g’,r’) be a pair of nonnegative integers satisfying 
29’ - 2 + r’ > 0. Then (up to isomorphism) there are only finitely many hyperbolic 
curves over k of type (g’,r’) that are isogenous to X. 

Proof. First, observe that given any finite set of curves isogenous to X, there exists 

a subfield k’ of k which is finitely generated over Q over which all the curves of 

that finite set, together with X itself, are defined. Thus, it suffices to show that the 

number of curves of type (g’,r’) that are isogenous to X over it’ (i.e., the algebraic 

closure of k’) is bounded by a number independent of the choice of subfield k’. On the 

other hand, since there always exists an embedding ?? & C, the uniform boundedness 

statement of the preceding sentence will be proven if we can prove the finiteness 

statement of the theorem in the case k = C. Thus, we may assume k = C. Then either 

X is arithmetic or it is not arithmetic. If X is arithmetic, it follows easily from the 

definitions that any curve isogenous to X will also be arithmetic. Thus, in this case, the 

theorem follows from Theorem 2.6. If X is not arithmetic, then the theorem is simply 

Theorem 3.3. 0 

5. Isogenies of general curves 

In this section, we show that (if one rules out certain exceptional cases, then) the 

only curves isogenous to a general hyperbolic curve are the finite etale coverings of the 

curve. This essentially amounts to a straightforward elementary calculation involving 

the Riemann-Hurwitz formula, but nevertheless we give full details below. We remark 
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that although the statement proven below (Theorem 5.3) that a general curve (of all 

but a few exceptional types) is equal to its hyperbolic core is strictly stronger than 

the statement that such a curve has no nontrivial automorphisms (cf. the remark at the 

end of Section 3), this calculation involving the Riemanr-Hurwitz formula is exactly 

the same as in the proof that such a curve has no nontrivial automorphisms. Thus, 

in principle, this calculation is “well-known.” Nevertheless, I have chosen to give 

full details below partly for the convenience of the reader, and partly because of the 

following set of circumstances: 

In the case r = 0, the calculation is much simpler and is contained, for 

instance, in [l]. Moreover, the result on automorphisms of a general curve 

for Y = 0 immediately implies the result on automorphisms of a general 

curve for r >O. Thus, if one is only interested in automorphisms, there is 

no need to carry out this calculation in the more difficult case r>O. On 

the other hand, the result that a general curve is equal to its hyperbolic 

core when r = 0 does not formally imply the corresponding result when 

r>O. Thus, to obtain the result on the hyperbolic core, one must carry 

out this calculation in complete generality (i.e., allowing that r might be 

nonzero). Since I do not know of a reference that gives this calculation in 

this generality, I decided to give full details here. 

Lemma 5.1. Let k be algebraically closed of characteristic zero. Suppose that k is a 

subfield of C. Let, X be a hyperbolic curve over k. Suppose that XC dgf X @.k C is not 

arithmetic. Then the morphism XC + YC appearing in the discussion of the hyperbolic 

core of Xc (see Definition 3.1) descends to some morphism X 4 Y over k. Moreover, 

X -+ Y has the universal property that any correspondence (C +X, C -+ Z) over k, 

fits uniquely into a commutative diagram: 

C-Z 

X-Y 

Finally, the morphism X --+ Y is independent (up to canonical isomorphism) of the 

embedding of k into C. 

Proof. Observe that (from the definition of XC -+ Yc) there exists a finite Ctale 

Galois covering XL -XC such that X& + YC is Galois. Since etale coverings are rigid, 

X6 --+ XC descends to some X’ +X over k. Moreover, since automorphisms of hy- 

perbolic curves are rigid, Autc(X&) =Autk(X’). Thus, G def Gal(Xd/Yc) acts on X’, 

so that we may form the quotient (in the sense of stacks) X’ + Y dAf X’IG. More- 

over, this quotient clearly factors through X, so we obtain a morphism X + Y that 

descends Xc + Yc, as desired. The universal property follows immediately by descend- 

ing (cf. the argument of Lemma 4.1) from C to k the corresponding analytic universal 
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property discussed in the paragraph following Proposition 3.2. The fact that X 4 Y 

does not depend on the embedding of k into C follows from the existence/uniqueness 

assertion inherent in the statement of the universal property. q 

Definition 5.2. Suppose that we are in the situation of Lemma 5.1. Then we shall refer 

to the stack Y constructed in Lemma 5.1 as the hyperbolic core Y of X. 

Notation. Let Y be a smooth, one-dimensional algebraic stack over a field k. Suppose 

further that Y is generically a scheme. Then we shall use the following notation for 

objects related to Y: let us write Yc for the “course moduli space” associated to Y (see, 

e.g., [2, Chap. 1, Section 4.101, for a discussion of the course moduli space associated 

to a stack). Thus, Yc is a smooth, connected, one-dimensional scheme over k, and we 

have a natural morphism Y + Yc. Let us write gr for the genus of the compactification 

of Yc, and ry for the number of points that need to be added to Yc to compactify it. 

Let us write CY for the set of points of Yc over which Y + Yc is not Ctale. For 0 E Cr, 

let i, be the ramification index of Y 4 Yc at CJ. Thus, i, will always be an integer 

2 2. Let j, dzf (i, - 1)/i,. Thus, j, is a rational number 2 i and < 1. We shall refer 

to the data (gr; ry; {iO}OEzy) as the type of the stack Y. Finally, we define 

ey dzf 2gr - 2 + r-y + C j,. 
UEZY 

Thus, one may think of ey as the Euler characteristic of Y 

Theorem 5.3. Let k be algebraically closed of characteristic zero. Suppose that k is 
a subfield of C. Fix nonnegative integers g and r such that 2g - 2 + r > 3. Then 
there exists an open dense substack % G (u%e,,,.)k (where (A&.)k is the mod& stack 
of (hyperbolic) curves of type (g,r) over k) with the following property: If X is a 
hyperbolic curve over some extension algebraically closed field K of k corresponding 
to a point E e(K), then the hyperbolic core of X is equal to X. Thus, in particular, 
(tf K is algebraically closed, then) for such an X, every hyperbolic curve isogenous 
to X can be realized as a finite &ale covering of X. 

Remark. The exceptional cases ruled out by the assumption that 2g - 2 + r > 3 are 

precisely the cases where (g,r) is equal to (0,3), (0,4), (1, l), (1,2), or (2,O). 

Proof of Theorem 5.3. It suffices to find some %! as in the statement of the theorem 

with the property that for X corresponding to a K-valued point of %! (where K is an 

algebraically closed extension field of k), the hyperbolic core (Definition 3.1) of X is 

equal to X itself. To do this, let us consider the case of an X which is nonarithmetic 

and whose natural morphism X -+ Y to its hyperbolic core Y has degree d > 1. From 

the Riemann-Hurwitz formula, we have 

2g-2+r=d 2gy-2+ry+ CjO . 
oay 
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Since 2g - 2 + r > 0, it follows that the expression in parentheses, which is simply ey, 

is also > 0. Now we have the following (well-known): 

Lemma 5.4. The expression in parentheses ey is bounded below by an absolute pos- 

itive constant, independent of X, g, and r. 

Proof. This is a simple combinatorial exercise. If 2gy - 2 + ry > 1, then ey > 1. If 

2g - 2 + ry = 0, then ey 2 i, If 2gy - 2 + ry = - 1, then either Cy has at least three 

elements, in which case ey > i, or CY has precisely two elements, in which case 

ey 2 i. If 2gy - 2 + t-y = - 2 (so gy = ry = 0), then we have the following possibilities: 

If CY has at least five elements, then ey 2 i. If CY has precisely four elements, then 

ey 2 A. Otherwise, Cy has precisely three elements. In this last case, observe that it 

is never the case that two iO’s are =2. This observation implies that if the largest 

i, is greater than or equal to 7, then ey > i - $ > 0. But there are only finitely many 

possibilities for Cr for which the largest i, is less than or equal to 6. This completes the 

proof. 0 

Lemma 5.5. If g and r are fixed, then there is only a finite number of possibilities 

for d, gr, ry, and CY. 

Proof. Since 2g - 2 + r = d’ ey, and (by Lemma 5.4) ey is bounded below by positive 

constant, it follows that d is bounded above. Since d is a positive integer, it thus 

follows that there is only a finite number of possibilities for d. Thus, there is only 

a finite number of possibilities for er. Since 2gr - 2 + t-y + i ICY 1 < ey (where ICY 1 is 

the cardinality of Cy), it thus follows that there is only a finite number of possibilities 

for gy, ry, and ICY I. But since each i, 5 d, it thus follows that there is only a finite 

number of possibilities for Cr. This completes the proof. 0 

Lemma 5.6. The locus (inside (_&&,r)k) of nonarithmetic curves that are not equal to 
their own hyperbolic cores is constructible (in (J&&r)k). 

Proof. Indeed, for each possible d, gy, r-y, Cy, one considers the moduli stack Jf of 

smooth, one-dimensional hyperbolic stacks Y with invariants gr, ry, Cy. (Note - for 

later use - that the dimension of this moduli stack is equal to 3gr - 3 + r-y + IZy I.) 
Then the moduli stack JV’ of pairs consisting of such Y together with a finite &tale 

covering X + Y of degree d (where X is of type (g, r)) forms a finite &ale covering 

JV’ + JV over A”. Moreover, the morphism that assigns to such a covering X + Y the 

curve X defines a morphism Jlr’ + (_,#%$,)k. Thus, the locus in question is the image 

of a finite (by Lemma 5.5) number of such A’“’ 4 (J&&h, hence is constructible. 0 

Thus, it follows from the proof of Lemma 5.6 that in order to prove Theorem 5.3, it 

suffices to prove that for all possible gy, ry, and Cr, we have 3g - 3 + r > 3gy - 3 + 
t-y + ICY 1 (at least under the hypotheses placed on (g,r) in the statement of the theo- 

rem). We proceed to do this in the paragraphs that follow: 
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First, let us consider the case gr 2 1. In this case, if we multiply the formula 

2g - 2 + r = d. eY by s and then subtract ir, we obtain 

3(gY-l)+irY+i c j, 
0EZr 

=3d(gy-l)+y c j ( aE~y 0) +drY+ (&+Y--ir) 

+ dry 

>3gy-3+ FflZyl +drY 

>3gy-3+ry+ICyl. 

(Here we use that dry > r, d > 2, j, > i.) Moreover, if gr 2 2, then the first “2” may 

be replaced with a “ > “, while if gy = 1 (so that rY + ICYI > l), then the third “2” 

may be replaced with a “>“. Thus, either way, we obtain that as long as gy > 1, we 

have 3g-3+r>3gy-3+rY+ICYl, as desired. 

NOW, we consider the case gy = 0. First of all, just as above, we obtain that 

3g - 3 + r > d(- 3 + ry + i C, j,). Since we wish to show that 3g - 3 + r > - 3 + 

rY + ICYI, it suffices to show 

QYdAf(d-l)(rY-3)+ 

is positive. (Here we use 

that the quantity 

that j,, > i.) Next, let us observe that if IZrl 2 7, 

then Qr > - 3d + 3 + yd - 7 = $d - 4 > i > 0. Thus, it suffices to consider the case 

I.Zyl < 6. Note that at this point, we still have not used the assumption that 2g - 2 + 

r > 3. 

Now note that if r = 0 and the desired inequality is false, then rY = 0, so 3g - 3 5 - 

3 + rY + ICYI < 3, so (g, r) = (2,0), but this case was ruled out in the hypothesis of the 

theorem. This completes the proof of the theorem when r = 0. 

Thus, for the rest of the proof, we assume that r # 0. Then rY # 0. Now if IZrl 2 5, 

then Qr 2 - 2d +2 + ad - 5 > i > 0. Thus, we obtain that ICyI 5 4. Now if rY > 3, 

and the desired inequality is false, then we obtain (under the assumption that 

(g, r) # (0,3)) that 0 < 3g - 3 + r I (rY - 3) + ICY 1, so it follows immediately that 

QY > 0; thus, rY L: 2. Thus, in summary, we have that ICyI 54, rY 52. Moreover, 

if /C~l~{3,4} d an rY=2, then QY>l-d+$d-3=id-2>;>0. Thus, in sum- 

mary we see that lCYl+rY15, (ICYl,rY)#(3,2). Note that at this point (in our 

treatment of the case r # 0), the only assumption that we have used concerning (g, r) 

is that it is not equal to (0,3). 
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Now we invoke the assumption that 2g - 2 + r 2 3. If the desired inequality is false, 

then 3g - 3 + r I - 3 + ry + ICY 1 52, so the only (g, r) that is still possible (and which 

is not ruled out in the hypothesis of the theorem) is (g,r) = (0,5). Thus, for the rest 

of the proof, we assume that (g, r) = (0,5). 

It remains only to examine the case /Crl = 4, ry = 1. In this case, Qy = d - 2, so 

Qr 5 0 implies d = 2. Thus, 5 = r I dry = 2, which is absurd. This completes the proof 

of Theorem 5.3. 0 

Remark. It is not difficult to check that in the exceptional cases (i.e., the cases where 

2g - 2 + r I 2) ruled out in Theorem 5.3, the hyperbolic core of a general curve is not 

equal to the core itself. Indeed, we have the following: 

Theorem 5.7. For a “general” (in the same sense as in the statement of Theorem 5.3) 

hyperbolic curve X of type (g,r), the canonical morphism X + Y to the hyperbolic 

core of X may be described as follows: gy = 0 and 

(1) If (g,r)=(O,4), then XtY has degree 4, ry=l, lCyl=3, all the i, are 2, 

and the ram@ation index at the point at injinity of Y is 1. 

(2) If (g,r)=(l,l), then X-Y has degree 2, ry=l, ICyI=3, all the i, are 2, 

and the ramljication index at the point at injnity of Y is 2. 

(3) If (g,r)=(1,2), then X+Y has degree 2, ry=l, IZyl=4, all the i, are 2, 

and the ramljication index at the point at injnity of Y is 1. 

(4) If (g, r) = (2,0), then X + Y has degree 2, ry = 0, ICY I = 6, and all the i, are 2. 

Finally, if (g, r) = (0,3), then X is arithmetic, so the hyperbolic core is not dejned. 

Proof. We continue computing with the notation at the end of the proof of Theo- 

rem 5.3. Thus, first of all, we have that 3g - 3 + r = ry + IZyl - 3. We begin with the 

case (g, r) = (2,O). In this case, ry = 0 and ICyI = 6. Thus, Qy = id - 3, so Qy 5 0 im- 

plies d = 2. Since a general proper curve of genus 2 is well-known to be hyperelliptic, 

this completes the case of (g, r) = (2,O). 

Thus, it remains to consider those (g, r) for which r # 0. Let us also assume (until 

the second to last paragraph of the proof) that (g, r) # (0,3). Then it follows from the 

proof of Theorem 5.3 that gr = 0 and ry is either 1 or 2. Moreover, if ry = 2, then 

lCyl=2, while if ry = 1, then ICyI is 3 or 4. 

If ry=2 and ICyl=2, then Qr=$d-1, so Qy<O implies d=2. Thus, 2g-2+ 

r = dey = 2, while 3g - 3 + r = ry + ICY 1 - 3 = 1, i.e., (g, r) = (0,4). We shall see later 

that in fact, this case cannot arise under the assumption that X -+ Y is the canonical 

map defining Y as the hyperbolic core of X. 

From now on, we assume that ry = 1. If ICyI = 4, then Qy = d - 2, so Qy < 0 

implies d = 2. Thus, 2g - 2 + r = dey = 2, while 3g - 3 + r = ry + ICY I - 3 = 2, i.e., 

(g,r)=(l,2). 
If (Crl = 3, then Qr = id - 1, so Qr 5 0 implies d E {2,3,4}. Since 3g - 3 + r = ry + 

ICY 1 - 3 = 1, it follows that 2g - 2 +r is 1 or 2. I claim that d # 3. Indeed, if d 

were 3, then all the i, would be = 3, so we would get 2g - 2 + r = dey = 3, which is 
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absurd. This proves the claim. Now observe that all the i, are equal to 2. Indeed, since 

the only possibilities for each i, are 2 and 4, if there were even one i, # 2, then we 

would have d = 4, er 2 i, so 3 < dey = 2g - 2 + r E { 1,2}, which is absurd. Thus, all 

the i, = 2, as claimed. Moreover, er = $, and d = 2(2g - 2 + r). In other words, either 

(g,r) = (0,4), in which case d = 4, or (g, Y) = (1, l), in which case d = 2. 

Next, we pause to remark that it is not difficult to show that a general curve of 

type (0,4) can actually be obtained as a degree four covering of a stack Y with 

gy=O, rr=l, lCrl=3, and all the i, = 2. Indeed, consider the covering of P’ minus 

four points defined by the permutations (12)(34); (13)(24); (14)(23); id. (Note that the 

product of these permutations is the identity.) Here we think of the points corresponding 

to the first three permutations as the points at which Y is not a scheme, and the point 

corresponding to the last permutation as the point at infinity of Y. Thus, the existence of 

such a covering shows that the case rr = 2, IJCr/ = 2 (where the degree is necessarily 

2, which is < 4) could not arise under the assumption that the map X -+ Y is the 

canonical map defining Y as the hyperbolic core of X. 

The only remaining case to consider is the case (g,r) = (0,3). In this case, it is well 

known that X is arithmetic. (In fact, it appears as a finite &tale covering of the moduli 

stack of elliptic curves.) Thus, the hyperbolic core is not defined. 

Finally, we observe that it is easy to see that morphisms X + Y as stated in the 

theorem always exist. Thus, the above case analysis shows that such morphisms are 

necessarily the hyperbolic cores in each of the respective cases. This completes the 

proof of the theorem. 0 

Remark. It is not difficult to see that all the exceptional cases listed in Theorem 5.7 

have the following property: a general curve X admits a correspondence (CI : Z --+X, 

p : Z-+X’) which is nontrivial in the sense that there does not exist a finite &tale 

y : X’ AX such that c1= y o fi (cf. Definition 1.2). Indeed, in the cases (g, r) = (0,4), 

(1, 1 ), since the hyperbolic cores are of the same type, (0,4)-curves and (1,1 )-curves 

provide “X” ‘s/“X”“s for each other. Next, we consider the case (g,r) = (1,2). If 

X + Y is the hyperbolic core of a general curve X of type (1,2), then let X’ + Y 

be the covering of Y of degree 4 defined by the permutations: (12)(34), (13)(24), 

(14)(23), (12)(34), (12)(34). (Here, one thinks of the first four permutations as de- 

scribing the ramification over the four points of Yc at which Y is not a scheme, and 

the last permutation as describing the ramification over the point at infinity of Y.) Then 

consideration of the inertia groups at the various points of X’ shows that X + Y and 

X’ + Y are linearly disjoint, so (Z dzf X x r X’ 4 X, Z 4 X’) gives the desired nontriv- 

ial correspondence. Finally, we consider the case (g, r) = (2,O). In this case, we take 

for X’ -+ Y the covering of degree 4 defined by the permutations: (12)(34), (13)(24), 

(14)(23), (12)(34), (13)(24), (14)(23). (Here, one thinks of these permutations as de- 

scribing the ramification over the six points of Yc at which Y is not a scheme.) Then 

consideration of the inertia groups at the various points of X’ shows that X -+ Y and 

X’ + Y are linearly disjoint, so (Z dAf X x rX’ +X, Z -+ X') gives the desired nontrivial 

correspondence. 
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6. Interpretation of a theorem of Royden 

Let (g, v) be a pair of nonnegative integers such that 2g - 2 + r > 0. Let J&. denote 

the moduli stack of r-pointed smooth (proper) curves of genus g. Here, the r marked 

points are unordered. (Note that this differs slightly from the usual convention.) The 

complement of the divisor of marked points of such a curve will be a hyperbolic curve 

of type (g,r). Thus, we shall also refer (by slight abuse of terminology) to (J&h as 

the moduli stack of (hyperbolic) curves of type (g,r). 

Let us refer to as a correspondence on A& an (ordered) pair of finite &ale mor- 

phisms CI : E -+A$,,, p : E-J&., where E is nonempty. We shall call a correspon- 

dence (a,/I) on J& trivial if LX= /I. Note that this definition of what it means for 

a “correspondence on a (single) object” to be trivial is a bit different from the def- 

inition (Definition 1.2) that we gave earlier for what it means for a “correspondence 

from one object to another object” to be trivial. 

Then we have the following result (essentially a consequence of a theorem of 

Royden): 

Theorem 6.1. Suppose that 2g - 2 + r > 3. Then AS?~,~ is generically a scheme, and 
moreover, does not admit any nontrivial automorphisms or correspondences. 

Proof. Write Y for the universal covering space of the analytic stack associated to the 

algebraic stack J&$, . Thus, Y is what is usually referred to as “Teichmiiller space”. 

Let us write Aut(Y) for the group of holomorphic automorphisms of z and r for the 

fundamental group of the analytic stack associated to Jo,,. Thus, we have a natural 

morphism r+Aut(.Yy. According to a theorem of Royden [3, Section 9.2, p. 169, 

Theorem 21, this morphism is, in fact, an isomorphism (under the given hypotheses 

on (g,r)). The injectivity of this morphism implies that &$,,. is generically a scheme; 

the surjectivity of this morphism implies that J.@,,, has no nontrivial automorphisms. 

Moreover, it is a matter of well-known general nonsense (see, e.g., the discussion of 

[4, p. 3371) that the existence of a nontrivial correspondence on ./& would imply 

the existence of an element of Aut(Y) - r such that r n (yTy - ‘) has finite index in 

r and in yTy - ’ . Thus, we see that there are no nontrivial correspondences on J&. 

This completes the proof of the result. q 

Remark. Note that the conclusion of the theorem is false in the exceptional cases ruled 

out in the hypothesis of the theorem. 
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